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Abstract: Artificial intelligence (AI) is becoming ubiquitous in our daily lives. In more 
and more fields, AI systems are transforming how knowledge is constructed, 
discoveries are realized, and how solutions are developed and tested. These changes 
have profound implications for the future workforce and citizenry. Yet, learning AI 
remains a niche subject largely reserved for advanced post-secondary educational 
contexts. While there is growing attention to broadening AI educational opportunities 
and, especially, to providing learning experiences for younger students, relatively little 
is currently known about how to most effectively provide AI education to K-12 
(kindergarten through 12th grade) students. In this paper, we discuss the design and 
present findings from an implementation study of an educational game for high-school 
AI education called ARIN-561. Drawing on an integrated analysis of gameplay log data, 
pre/post knowledge, and disposition surveys for nearly 1,000 high school students, we 
present findings on the efficacy of the educational game and its constituent activities in 
advancing AI learning goals. We explore possible interactions between learning 
outcomes, incoming math knowledge, prior gaming experience, and other factors that 
can inform future learning design and shed light on what can position youth for success 
in game-based AI learning experiences. 
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1. Introduction 
 
Artificial Intelligence (AI) is a foundational technology permeating every aspect of our daily 
lives. Rapid advances in the design and implementation of AI systems have led to the ever-
expanding role for AI in society. It is also profoundly transforming our workforce around the 
globe. While some of today’s youth will become the future AI workforce and a majority of 
them will join a workforce that utilizes AI, all will become end-users, such as consumers of AI 
(Gardner-McCune et al., 2019). It is critical, therefore, to prepare future generations with 
basic knowledge of AI, not just through higher education, but beginning with childhood 
learning. 
 
While AI’s impact on society is deepening and expanding in myriad ways, and innovative 
educational opportunities are being rapidly developed, there has been little research into 
how students, especially pre-college students, construct an understanding of and gain 
practice with core ideas in the field. As a result, there is yet little possibility of grounding the 
design of learning experiences in evidence-based accounts of how youth learn AI concepts, 
how understanding progresses across concepts, or what concepts are most appropriate for 
what age-levels. AI is built on a foundation of philosophy, psychology, and mathematics, and 
it centers around using algorithms to solve real-world problems (Russell and Norvig, 2016). 
This provides a theoretical foundation to connect AI learning to existing Science, 
Technology, Engineering, and Mathematics (STEM) subjects in K-12 classrooms. Given the 
packed schedule of existing courses of K-12 students, it becomes a more realistic approach 



to embed AI education in K-12 classrooms. Such an approach to AI instruction offers a rich 
context to learn scientific and mathematical concepts already taught in K-12 (Wang and 
Johnson, 2019) and to apply them to problem-solving. 
 
One technology-based approach to bring AI to the K12 classroom that has shown promise in 
other STEM disciplines is digital game-based learning. Decades of research evidence point 
to the efficacy of game-based learning in promoting student learning (Plass et al., 2020). 
However, there is little research into using game-based learning for AI education for youth 
(Lee et al., 2021), given that the research field of K-12 AI education is still in its infancy. In 
this paper, we will discuss the design and initial implementation study of an educational 
game, called ARIN-561, for teaching high-school students about AI. We conducted an 
evaluation study at high schools in the United States. Results indicate the potential of ARIN-
561 to build AI knowledge, especially for students who have background knowledge with the 
relevant mathematical concepts typically taught at the high school level.  
 
2. Related Work 
 
AI education has long been absent from K-12 classrooms. Recent efforts are beginning to 
investigate the integration of AI into K-12 schools, including defining AI literacy (Long and 
Magerko, 2020) and developing curricula and guidelines (Gardner-McCune et al., 2019; MIT 
AI Education Initiative, 2021). Researchers in youth AI education have been experimenting 
with teaching AI, including machine learning (Rodríguez-García et al., 2021; Zhou et al., 
2021) and ethics (Forsyth et al., 2021), within the context of computational thinking (Ritter et 
al., 2019) through conversational agents (Lin et al., 2020), dance (Payne et al., 2021), and 
game-based learning (Lee et al., 2021). Discussions on youth AI education are heating up in 
Europe (Kandlhofer et al., 2019; AI+, 2021), China (Peterson et al., 2021), Israel (Shamir 
and Levin, 2020), and around the world (Youjun et al., 2018; Yukun and Tang, 2018). For 
example, researchers in Thailand have designed an agricultural-based AI challenge to foster 
middle-school students’ learning of the machine learning process in the form of a game 
(Sakulkueakulsuk et al., 2018), where students build machine learning models to classify 
ripe or unripe mangoes. In Australia, researchers have designed and implemented 
classroom activities for teaching fundamental concepts of AI to Year 6 students to demystify 
AI through activities such as an unplugged activity on facial recognition and a simple robotic 
exercise that introduces the concept of machine learning (Ho et al., 2019). 
 
The work presented here aims to uncover how to design an educational game to meet the 
challenges of teaching AI to K-12 students. This work builds upon explorations into how K-12 
students approach AI concepts, what obstacles they face, and how to guide them through 
obstacles (Greenwald et al., 2021). This work also draws upon previous investigations into 
linking AI to the K-12 math curriculum to identify AI concepts suitable for high school 
students (Wang and Johnson, 2019), as well as work investigating the learning of 
computational thinking (Lee et al., 2011) and seminal research into comprehension of 
mathematical representations (e.g., Curcio, 1987; Friel et al., 2001).  
 
3. ARIN-561 Game-Based Learning Environment 
 
ARIN-561 is a 3D role-playing game designed to teach high-school students AI concepts, 
prompt them to apply their math knowledge, and develop their AI problem-solving skills. In 
the game, students play as a space-faring scientist who has crash landed on an alien planet, 
named ARIN-561 (Figure 1). In order to safely return home, the scientist begins exploring 
the planet to gather resources needed to repair the broken ship while uncovering the 
mystery of the planet. The activities for survival and for exploration form the basis for the 
tasks the students carry out in the game. The game currently covers three classical search 
algorithms: breadth-first search (BFS), depth-first search (DFS), and greedy search. Each 
topic consists of two modules: a tutorial module (e.g., Figure 1 bottom left) and a transfer 
module (e.g., Figure 1 bottom right). Embedded in all the tutorial and transfer modules are 



quizzes that help students pause and self-assess (Figure 1 top right). In-game challenges, 
such as searching for missing spaceship parts or cracking passwords, serve as natural 
opportunities for the introduction of search as a topic. The essential concepts such as space 
and time complexity also lend opportunities to connect math knowledge familiar to high 
school students and these AI concepts that are usually taught in higher education. The 
integrated educational content in ARIN-561 leverages this opportunity by supporting the 
students’ application of math knowledge to the evaluation of each algorithm as they progress 
through the game. In additional to the learning modules, students can also explore the game 
environment for “off-task” activities (Sabourin et al., 2011), such as gathering minerals 
around the planet. 
 

 
Figure 1. Screen capture from ARIN-561. Top-left: The player crash landed on a 

foreign planet. Top-right: student is presented with a quiz question about 
estimating the complexity of search algorithms. Bottom left: student think-alouds 

through the greedy search algorithm. Bottom-right: the student solves an 8-puzzle 
using one of the search algorithm to fix their companion robot’s circuit board. 

 
 
3.1 Learning Experience Design in ARIN-561 
 
The design of ARIN-561 is guided by lessons learned from pilot studies on student AI 
problem-solving (Greenwald et al., 2021). We also developed additional design principles 
based on our observations of the characteristics unique to AI learning, and how lessons 
learned from related fields, such as computer science education (Lee et al., 2011), could be 
used to inform the design here. 
 
Facilitate Abstraction In a cognitive interview study, researchers explored how K-12 
students, particularly those in high school, approach AI concepts, what obstacles they face, 
and how to guide them through obstacles (Greenwald et al., 2021). In the study, students 
were presented a set of AI problems in a wide range of topics, such as various machine 
learning algorithms. Students’ think-alouds as they attempted to solve the AI problems 
(using paper and pencil) shed light on the critical step most students struggled with — 
problem formulation, or the Abstraction phase in computational thinking, i.e., Abstraction, 
Automation, and Analysis (Lee et al., 2011). This is an initial step where students formulate a 
problem described in natural language (e.g., find the shortest path) into one that can be 
solved by a computer, such as creating variables (e.g., distance), determining end conditions 



(e.g., search ends when distance can’t be minimized). Strategies employed by the expert 
interviewer provided a basis for pedagogical design in ARIN-561. 
 
One of the design decisions made to facilitate Abstraction was to display the real-world 
problems and the abstract representations side-by-side and to update both synchronously 
(e.g., the lower-left screen in Figure 1). In an ARIN-561 route-planning problem where 
students are tasked to use search algorithms to plan a route to a waterfall, a map is placed 
on one side of the screen while a search tree is displayed over and next to the map. As 
students direct the algorithm by exploring locations, connected via roads, on the map, the 
search tree updates accordingly step-by-step and illustrates how locations are represented 
as nodes and roads are represented as edges in a tree data structure, and how route-
planning on a physical map is computationally solved as the expansion of a search tree. 
When a goal node is reached in the search tree, it is highlighted both on the search tree as a 
path across edges from root to the goal node, and on the map as a route reaching the 
waterfall connected via roads. 
 
Learning Transfer In education, transfer of learning occurs when learning in one context 
enhances or undermines a related performance in another context (Perkins et al., 1992). 
During learning transfer, students apply learning in one discipline across multiple situations. 
Transfer of learning is particularly important for AI education, as AI can be considered as a 
discipline of using algorithms to solve real-world problems. When students learn how an AI 
algorithm can be used to solve illustrative problems in one domain, it is critical to also guide 
them through problems from a different context to help them build the connection — the 
abstract representation of the algorithm that can be applied to formulate solutions to 
seemingly different and unrelated problems. 
 
For each algorithm covered in ARIN-561, we developed a tutorial problem and a transfer 
problem. The two sets of problems are different enough to arguably be considered as far 
transfers (instead of near transfers) (Perkins et al., 1992). Tutorial problems are chosen from 
domains familiar to the students, such as finding a route from point A to B on a map. In a 
typical tutorial module, students are scaffolded through the abstraction, automation, and 
analysis processes (Lee et al., 2011) through the player character’s think-aloud and their 
dialogue with the companion robot. In the abstraction phase, the students are guided to 
create an abstract representation of the practical problem. After students demonstrate their 
understanding by correctly expanding the tree for several levels, they are provided with the 
option to automate the process. In the automation phase, students can watch the search 
tree continue to expand automatically, on the same interface — physical map and abstract 
search tree placed side-by-side. Students can also pause and step through the tree 
expansion one step at a time to examine the process closely. The automated expansion 
animation helps illustrate the characteristics of the search algorithms, e.g., expanding in a 
breadth-first or depth-first fashion. In the analysis phase, students are guided by the game 
narrative to examine the solution (e.g., the route found) and to evaluate the process through 
which the solution was generated (e.g., time and space complexity of the search algorithm). 
The subsequent transfer problem module presented students with a different problem, such 
as cracking a password or solving an 8- puzzle. Students were guided by similar but much 
abbreviated scaffolds through the Abstraction, Automation, and Analysis processes in the 
transfer phase. 
 
Comparative Explanation AI is human ideas represented mathematically and realized 
computationally. From Classical Search to Local Search, from Propositional to First-Order 
Logic, from Decision Trees to Genetic Algorithms, AI algorithms build on each other: a new 
algorithm is often created by modifying an existing one, to solve problems that the existing 
one was not suited or able to solve. This insight creates both challenges and opportunities 
for AI education. The evolutionary characteristics of AI algorithms provide a basis for 
pedagogy that leverages students’ prior knowledge (of an algorithm they are already familiar 
with) while constructing the new ones. By directly comparing the new and old algorithms, for 



example, students not only learn the new, but also reinforce the learning of the old. Such 
comparisons are not just algorithmic, but also the contextual in terms of application. 
Understanding the pros of the new and cons of the old in what problems they are or are not 
suited to address is a key to using AI for problem solving. The approach of prior knowledge 
activation is not new (Alvermann et al., 1985), nor is the issue of activating inaccurate prior 
knowledge (van Loon et al., 2013). The explicit and direct comparison between the new and 
old, when discussing the new, may offer an opportunity for students to reexamine their 
misconceptions of the old. 
 
In ARIN-561, game modules are organized by learning topics, such as BFS and DFS. After 
scaffolding students through the first AI algorithm (such as BFS), each new AI algorithm 
(e.g., DFS) is introduced through an example problem that the previous algorithms fail to 
solve (e.g., computer runs out of memory when using BFS for route planning). The students 
are then guided through the Analysis phase to uncover why the previous algorithm failed 
(e.g., storing too many nodes in computer memory) and how to modify it to address its 
weakness (e.g., prioritizing expanding child nodes instead of sibling nodes in the search 
tree). Such modification thus results in the birth of the new algorithm (e.g., DFS). The direct 
comparisons are not only realized in the explanations through the game narrative, but also 
illustrated on the user interfaces across the learning of different algorithms. 
 
4. Methods 
 
4.1 Recruitment 
 
Twenty-three math, science, and computer science teachers from a school district in a major 
metropolitan area in the United States participated in the study. 1274 high school-aged youth 
from classes taught by participating teachers were recruited for the study. 
 
4.2 Procedure 
 
Participating teachers were provided an overview of the game, learning goals, and study 
procedure a few months before the study began. A few weeks prior to the study, students 
were given an online parental consent form and a youth assent form. Only students who 
consented participated in the study. The study was carried out over 4 class sessions, each 
lasting 45-55 minutes long, with at least 2 class sessions dedicated to individual gameplay 
for students. During the first session, students were first assigned IDs to protect their identity 
throughout the study, and then completed the pre-survey online. At the end of the first 
session, students logged into the ARIN-561 game online via a web browser. Any technical 
difficulties encountered were addressed during the first session, via support from the 
research team. During the second and third sessions, students continued to interact with 
ARIN-561 at their own pace. Game progression, play time, and answers to in-game 
questions were recorded for each participant. During the fourth session, students completed 
the post-survey online. 
 
With restricted access to school campuses due to COVID-19, the study was carried out 
entirely by the participating teachers. The research team did not participate in the data 
collection. Additionally, because students were not required to answer all the questions on 
the pre- and post-surveys, there are missing data at the item level for some students. 
 
4.3 Measures 
 
The pre-survey consisted of items about students’ demographic background, AI Use Type, 
Interest in AI, AI Knowledge (15 questions), Math Self-efficacy [Liu and Koirala, 2009], and 
Math Knowledge. All scales except the Math Self-efficacy were developed by the research 
team. The AI Use Type included items such as “When I think about how I’d like to interact 



with AI in the future, I expect that: I will use AI systems in my everyday life as a consumer, 
and I expect to USE AI systems as a part of my job.” The Interest in AI scale included 
questions such as “Outside of school I try to learn a lot about AI.” The assessment of AI 
knowledge and math knowledge specifically focused on the content covered in ARIN-561, in 
the format of multiple-choice questions. The AI questions were set in the context of solving 
AI problems similar to those encountered in the game. The questions assessed students’ 
understanding of, for example, pros and cons of the search algorithms, search algorithms 
most applicable to specific types of problems, etc. In the post-survey, the same items on 
interest in AI and AI knowledge from the pre-survey were included. In addition to the 
surveys, game logs from ARIN-561 were collected. The logs included the in-game click-
stream data and responses to in-game quizzes. 
 
5. Results 
 
Of the 1274 participating students, 1014 completed the post-survey. The research team was 
able to match pre-, post- surveys, and game logs for 764 students. Other than normal 
attrition (e.g., students absent at either pre, post administration, or game play class), 
additional data loss was primarily due to errors in student ID entries on the survey platform, 
which resulted in mismatches of student IDs between both surveys and game logs. We 
conducted ANOVA analyses to ensure the final sample of 764 students was not significantly 
different from the full participant sample in terms of background, such as gender, 
race/ethnicity, and prior mathematical knowledge. 
 
The participants’ average age was 16, with 18% 12th graders, 30% 11th graders, 23% 10th 
graders, and 29% 9th graders. A total of 46% of the students identified as male, 48% 
identified as female and 6% identified as other categories or preferred not to disclose. 27% 
of the students speak English at home, 67% speak both English and a second language at 
home, and 6% speak only a language other than English at home. Spanish is reported as 
the non-English language for those students. Interestingly, even though ARIN-561 and the 
surveys are offered in both English and Spanish, and the teachers were briefed about the 
language choice prior to the study, all the students chose to use the English version of the 
surveys and the game. 
 
5.1 AI Learning Gain 
 
We conducted a paired sample t-test on the AI knowledge scale from pre- and post- surveys 
to examine if playing the game resulted in gains in AI knowledge. Table 1 summarizes the 
pre/post changes in AI Knowledge and in sub-constructs directly relevant to modules in the 
game (additional AI knowledge items covered in broader topics such as search tree 
representations). Results show that students who participated in the study demonstrated 
statistically significant gain in AI knowledge, with a mean difference of 0.37 on a 34-point 
scale (p = .011). The AI knowledge scale include 3 sub-scales for each of the search 
algorithms covered in the game (BFS, DFS, and Greedy search). Additional paired-sample t-
tests revealed a statistically significant gain for BFS learning (mean difference of .30* on an 
11-point scale, p = .001), a smaller and not statistically significant change for DFS learning 
(p = .088), and a nearly flat outcome for the items focused on the Greedy search algorithm. 
 
Table 1. Paired-sample t-test results on AI learning gains (pre/post), breaking down by Overall 
(all items in the scale), BFS, DFS, and Greedy Search learning sub-scales. 

Metric Pre-Test Post-Test Max-Score T-statistics p-value Effect Size 
Overall 14.16 14.53 34 2.54 0.011 0.105* 
BFS 5.30 5.60 11 3.25 0.001 0.149* 
DFS 4.36 4.50 9 1.71 0.088 0.081 
Greedy 2.09 2.06 3 -0.48 0.629 -0.022 

  



5.2 Student Background and AI Learning 
 
In the pre-survey, we gathered data on students’ demographic background, such as gender, 
grade level, language spoke at home, and video game experiences. ANOVA tests show that 
pre/post AI learning gains did not differ significantly between students of different gender, 
grade-level, and language spoken at home. Learning gains differed however between 
students with different prior gaming experience (Figure 2). The participants reported a wide 
range of gaming experiences. Given the detailed categorization of gaming experiences, we 
grouped the students into two groups: those who don’t play video games or play 1-2 hours 
per week (60% of the sample), and those who play 3 or more hours per week (40%). 
Students who play video games less than 2 hours per week had significantly lower gain on 
overall AI knowledge (M<2h = .0132, M>3h = .8428, p = .006), including sub-scales on BFS 
learning (M<2h = .0132, M>3h = .8428, p = .003), Greedy learning (M<2h = −.18, M>3h = .11, p = 
.019) but not DFS learning (M<2h = .04, M>3h = .29, p = .152), compared to students who play 
video games 3 or more hours per week. 
 
The pre-survey also includes items that measure Math Self-Efficacy, (relevant) Math 
Knowledge, and Interest in AI. We conducted a series of regression analyses to investigate 
these three student level factors that may be predictive of observed learning gains. We 
found that the prior Math Knowledge (as demonstrated on the pre-survey item set) predicted 
observed AI learning gains (R = .1, p = .006). This suggests that relevant math knowledge is 
weakly but significantly related to higher AI knowledge gained through ARIN-561. 
 

 
Figure 2. Left: Percentage of students with different weekly gaming experience. Right: 

AI Knowledge gain broken down by weekly gaming experience. 
 
5.3 In-Game Progress and AI Learning 
 
The pedagogical design of ARIN-561 is based on the hypothesis that AI algorithms build on 
each other. Algorithms, such as DFS introduced later in the game are discussed in 
comparison to previously introduced algorithms, such as BFS. While students can jump 
through different modules by going through the menu selection screen in the game, overall, 
students took a relatively linear path through the game, by going through BFS, DFS, then 
Greedy game modules. Thus, as students progress through the game, mastering previously 
discussed algorithm should help students’ learning of the new ones, while learning the new 
algorithm helps student reinforce the learning of the older ones. We analyzed how reaching 
milestones in the game, such as completing the DFS module (both tutorial and transfer 
problem modules), impacts overall AI learning and the learning of individual algorithms. 
Independent sample t-test shows there is no significant difference in AI knowledge gain be- 
tween students who completed all modules of the game and students who did not (NT = 556, 
NF = 208, T: completing, F: not completing, p = .642). Students who completed the BFS 
module did not gain significantly more AI knowledge overall (F = 1.169, p = .28) or BFS 
knowledge (F = .5, p = .48) than those who started but didn’t complete BFS modules. 
However, completing BFS did help students gain more knowledge on DFS (F = 4.545, p = 
.033) and greedy search (F = 3.204, p = .074). Completing the DFS or greedy modules did 



not have a significant impact on overall or individual AI algorithm learning. Given that all 
students are given the same amount of time to play the game in the classroom, we did not 
analyze how time in game impacted AI learning. Overall, students spent between 3 seconds 
and 338 minutes in the game, with a mean/median gameplay time of 89/84 minutes. The 
outlier of extremely long game-play time is likely due to students forgetting to log out of the 
game at the end of the class. 
 
6. Discussion 
 
This study demonstrates that a relatively brief in-school exposure to AI learning experiences, 
via an educational game, can result in learning gains for AI content with pre-college aged 
youth. Examination of the subscale scores for the AI Knowledge assessment indicated that 
the learning that took place was concentrated on the BFS algorithm, with smaller gains for 
DFS, and no gains for Greedy. Drawing on the learning and assessment design concept of a 
learning progression (Wilson, 2009; Duncan and Hmelo-Silver, 2009), our conjecture is that 
the design of gameplay, in which students first encountered BFS then compared it to each of 
the next two algorithms as the game progressed (DFS, then Greedy), led to consolidation of 
understanding related to BFS and thus a deeper opportunity to learn that content. However, 
we did not observe a statistically significant impact of completing the BFS, DFS, or Greedy 
modules on BFS learning gains. Completing the BFS modules however, did contribute to 
learning DFS and Greedy search. This suggests the efficacy of the progressive roll out of 
content in our design, where each new content area is explicitly related to prior content. 
Later design iterations will look to extend opportunities for students to connect and 
consolidate their emerging understanding of content encountered later in the game, e.g., 
through additional integrative activities. 
 
The significance of prior mathematical knowledge for predicting observed AI learning gains 
suggests an educational game that is optimized for youth who already enter with a strong 
mathematical foundation. This would challenge efforts at using the current iteration of the 
game for a broad high-school population with a wide range of prior math competencies. 
Future design iterations will look to support students with varying levels of prior mathematical 
knowledge, either through focused tutorials for related math content and/or through im- 
proved game design that better resonates with students who have not yet taken advanced 
math courses. 
 
We also see promise for this game-based instructional model in the feasibility of its 
implementation. First, the youth who engaged with the game did so largely independently of 
a teacher. The minimal need for outside expertise means that implementation is likely to be 
less dependent on having educators with AI and computer science expertise, an important 
consideration given widely reported shortages of high-school teachers with such expertise. 
Also related to feasibility of implementation, completing the game took roughly 2 class 
periods on average, which minimizes the time it may draw away from existing scope and 
sequence. Thus, the educational game is well-positioned to be integrated into a wide range 
of courses and instructional contexts. On the other hand, the AI knowledge growth was 
relatively small (effect size =.105), indicating that spending 2 classes playing an AI-themed 
video game is unlikely to contribute to learning gains that might be expected from a fuller 
instructional sequence or dedicated course. Interestingly, during post-implementation 
conversations, the participating teachers expressed strong interests to integrate classroom 
discussions with game-based learning, and suggested dividing the classroom time into 
independent gameplay and post-gameplay whole-class discussion, where teachers organize 
discussions to help students reflect upon what’s learned through the game. Such an 
integrated approach has the potential to further enhance the efficacy of the educational 
game. 
 
The study was dependent on a researcher-developed measure of AI knowledge, with limited 
evidence available of its validity with the population sampled. This speaks to the current 



dearth of AI knowledge measures developed for precollege-aged youth, a challenge that our 
research team, and others, are working to address through ongoing research and 
measurement development. In this specific case, we note that the assessment was likely too 
difficult for the sampled population (for example, the mean score on the post-intervention 
administration was 14.53 out of a possible 34 points), limiting its potential for demonstrating 
the learning of high-school-aged youth. Additionally, the measure included different numbers 
of items for each of these subscales, with fewer items for DFS and Greedy compared with 
BFS. This constricted the available range for movement on those constructs, potentially 
impacting observability of changes that may have taken place. Our team is conducting 
psychometric tests (classical and IRT methods) and triangulating that with in-game 
opportunities to demonstrate understanding to inform revisions to our instrument for this 
population. 
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